Intragastric Balloon Versus Endoscopic *Sleeve Gastroplasty for the Treatment of* **Obesity: a Systematic Review and Meta**analysis

Shailendra Singh, Diogo Turiani Hourneaux de Moura, Ahmad Khan, Mohammad Bilal, Monica Chowdhry, Michele B. Ryan, Ahmad Najdat ONLINE

Obesity Surgery

The Journal of Metabolic Surgery and Allied Care

ISSN 0960-8923

OBES SURG DOI 10.1007/s11695-020-04644-8

Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media, LLC, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to selfarchive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

ORIGINAL CONTRIBUTIONS

Intragastric Balloon Versus Endoscopic Sleeve Gastroplasty for the Treatment of Obesity: a Systematic Review and Meta-analysis

Shailendra Singh¹ · Diogo Turiani Hourneaux de Moura² · Ahmad Khan³ · Mohammad Bilal⁴ · Monica Chowdhry³ · Michele B. Ryan² · Ahmad Najdat Bazarbashi² · Christopher C. Thompson²

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Background We aimed to individually evaluate IGB and ESG procedures and compare the efficacy, durability, and safety of these procedures.

Methods Bibliographic databases were systematically searched for studies investigating the use of IGB and ESG for the treatment of obesity. Studies reporting percent total weight loss (%TWL) or percent excess weight loss (%EWL) with at least 12 months of follow-up were included.

Results A total of 28 studies were included in the final analysis. Only 1 study directly compared ESG to IGB, 9 studies evaluated ESG alone, while 18 studies evaluated IGB. At 12-month follow-up after ESG, mean %TWL was 17.51 (95% CI 16.44–18.58), and %EWL was 60.51 (95% CI 54.39–66.64). Mean %TWL and %EWL after IGB at 12 months was 10.35 (95% CI 8.38–12.32) and 29.65 (95% CI 25.40–33.91), respectively. Mean %TWL and %EWL after IGB were significantly decreased at 18 or 24 months compared to 6 months indicating weight regain after IGB removal. ESG achieved significantly superior weight loss compared to IGB, the difference in mean %TWL was 7.33 (95% CI 5.22–9.44, p value = 0.0001) at 12 months. Serious adverse events were observed in < 5% for both procedures.

Conclusion Although ESG and IGB are safe and effective for weight loss, our study suggests that ESG results in more significant and sustained weight loss. Nevertheless, a variety of approaches are essential to care for this underserved population, and there are several factors other than weight loss that should be considered in selecting the ideal therapy for individual patients.

Keywords Obesity \cdot Intragastric balloon \cdot Gastric balloon \cdot IGB \cdot Endoscopic sleeve gastroplasty \cdot ESG \cdot Endoscopic and bariatric therapy

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11695-020-04644-8) contains supplementary material, which is available to authorized users.

Shailendra Singh shail121@gmail.com

> Diogo Turiani Hourneaux de Moura dthmoura@hotmail.com

Ahmad Khan drahmadk83@gmail.com

Mohammad Bilal billa17@hotmail.com

Monica Chowdhry monica18.neo@gmail.com

Michele B. Ryan mryan@bwh.harvard.edu Ahmad Najdat Bazarbashi abazarbashi@bwh.harvard.edu

Christopher C. Thompson ccthompson@bwh.harvard.edu

- ¹ Division of Gastroenterology, West Virginia University Health Sciences Center Charleston Division, Charleston, WV, USA
- ² Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- ³ Department of Medicine, West Virginia University Health Sciences Center Charleston Division, Charleston, WV, USA
- ⁴ Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Introduction

Obesity is a global pandemic and is associated with significant morbidity and mortality. Most patients fail to achieve sustained weight loss with lifestyle modification and pharmacotherapy. Bariatric surgery is effective but carries a risk of complications and low patient acceptance with less than 2% of eligible patients ultimately undergoing surgery [1]. Endoscopic bariatric and metabolic therapies (EBMTs) have emerged over the years, to provide options beyond lifestyle modifications, medications, and surgery. EBMTs can provide a minimally invasive, effective, and safe treatment approach to obesity [2].

Among the armamentarium of EBMTs, intragastric balloons (IGBs) are the most well established. Currently, there are three FDA-approved IGBs on the market designed to treat obesity: ReShape Integrated Dual Balloon System (ReShape Lifesciences, San Clemente, CA, USA), Orbera Intragastric Balloon System (Apollo Endosurgery, Austin, TX, USA), and Obalon Balloon system (Obalon Therapeutics Inc., Carlsbad, CA, USA). Several studies have demonstrated the efficacy and safety of these IGBs [3, 4]. Another EBMT, endoscopic sleeve gastroplasty (ESG), has recently gained popularity for the treatment of obesity. ESG utilizes an endoscopic suturing device (OverStitch, Apollo Endosurgery, Austin, TX) to apply full-thickness sutures in the stomach, reduce gastric capacity, and delay gastric emptying. In 2012, Thompson and Hawes performed the first ESG using the current full-thickness suturing device [5]. Since then, many studies have demonstrated the safety and efficacy of this procedure [**6**, **7**].

Data comparing these common EBMTs are lacking. The choice of one procedure over the other has been mainly driven by physician expertise, patient preference, and costs. Multiple EBMTs are now being developed, and it is imperative to evaluate and compare these procedures to inform physicians and patients about their safety and efficacy.

ASGE (American Society for Gastrointestinal Endoscopy) and the American Society for Metabolic and Bariatric Surgery (ASMBS) joint task force [8] defined thresholds of a mean minimum threshold of 25% excess weight loss (%EWL) measured at 12 months for an EBMT intended as a primary obesity intervention and 5% total body weight loss (%TWL) as absolute minimum threshold for any nonprimary EBMT such as bridging therapy. We aimed to individually evaluate IGB and ESG procedures as per the ASGE task force thresholds and compare the efficacy, durability, and safety among these procedures.

Methods

Analyses (PRISMA) guidelines. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (ID CRD42019140945).

Data Source and Search Strategy

Electronic searches were performed by a medical librarian (A.C.) with input from the study investigators. Medline (PubMed), Scopus, Cochrane Register of Controlled Trials, and Web of Science databases were queried from their dates of inception to August 2019. There was no language restriction; however, we restricted our search query to observational and randomized controlled trials (RCT). The search strategy is detailed in Supplement 1.

All data were extracted from article texts, tables, and figures with any estimates made based on the presented data and figures. Two study investigators (S.S. and A.K.) independently reviewed the titles and abstracts of studies identified in the search, and its eligibility was determined based on prespecified inclusion and exclusion criteria. The full text of the relevant articles was evaluated. Any discrepancy was resolved by discussion and re-evaluation by senior authors (C.C.T. and D.T.H.M.).

Eligibility

All RCTs and observational studies in which patients underwent EBMT with either IGB or ESG procedure alone with or without lifestyle modification for obesity treatment were included. Studies that reported %TWL or %EWL at a follow-up of a minimum of 12 months were included to assess the weight loss as per the ASGE task force recommended threshold. Also, the objective was to compare the durability of these procedures beyond the initial treatment duration; therefore, only studies with a minimal follow-up of 12 months were included. In studies with more than one treatment arm, patients who underwent ESG or IGB alone with or without lifestyle modification were included.

Patients with prior or sequential EBMTs or bariatric surgery were excluded. Case reports and study with < 25 patients were excluded because of the bias associated with case reports/small case series and the learning curve associated with the EBMTs. ESG studies were excluded if endoscopic gastroplasty techniques using devices other than the OverStitch endoscopic suturing system were used. Studies with IGBs not approved by the US Food and Drug Administration (FDA) were excluded. Letters, editorials, expert opinions, and reviews without original data were excluded. Only the most updated study was selected for each institution/operator while other studies with overlapping patient cohorts were excluded.

Data Extraction, Quality Assessment, and Statistical Analysis

Following data were abstracted using a standardized data collection by two investigators: study characteristics, patient baseline characteristics, procedure-related data, weight loss outcomes at follow-up, adverse events, reversal of ESG procedure, or early removal of IGB and mortality. Primary outcomes of interest were %TWL or %EWL reported as mean change from baseline at follow-up periods 6, 12, 18, and 24 months when available and adverse events. Weight loss outcomes at 18 and 24 months were combined and reported together (18–24 months). Adverse events were classified and reported as per included studies.

Quality assessment of randomized controlled trials (RCTs) was done using the NIH Quality Assessment of Controlled Intervention Studies tool. For quality assessment of observational studies, the Newcastle-Ottawa scale (NOS) for quality assessment and bias assessment was used. The quality assessment of the studies was done by two independent authors (A.K. and S.S.). A disagreement on the score was discussed with a third reviewer (D.T.H.M.) and was resolved by consensus.

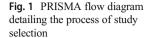
Pooled means for %TWL and %EWL at 6-, 12-, and 18-24-month follow-up were calculated for each type of EBMT. Studies that did not report standard deviations or if standard deviations could not be calculated, then the reported mean of the study was used as an estimate of its standard deviation to include them in the metaanalysis. Meta-analyses were performed using a DerSimonian and Laird random-effects approach given the degree of heterogeneity. We performed a subgroup analysis based on follow-up duration. To combine studies within a subgroup, we assumed a common among study variance component across subgroups (pool within-group estimates of tau-squared). Differences in the mean of %TWL and %EWL were calculated to compare all ESG and IGB procedures. To assess the impact of study-level covariates on outcomes, metaregression analysis was performed. Meta-analyses for all outcomes were presented as forest plots with summary statistical estimates, 95% confidence intervals, and relative weights. A p value of less than 0.05 was considered statistically significant. Statistical heterogeneity was evaluated through Cochran's Q test and I^2 statistics. An I^2 value greater than 50% was considered to indicate high statistical heterogeneity. To analyze the safety of each type of EBMT, we reported an overall incidence of most common reported adverse events. All statistical analysis was conducted using Comprehensive Meta-Analysis Software Version 3 (Biostat; Englewood, NJ, USA).

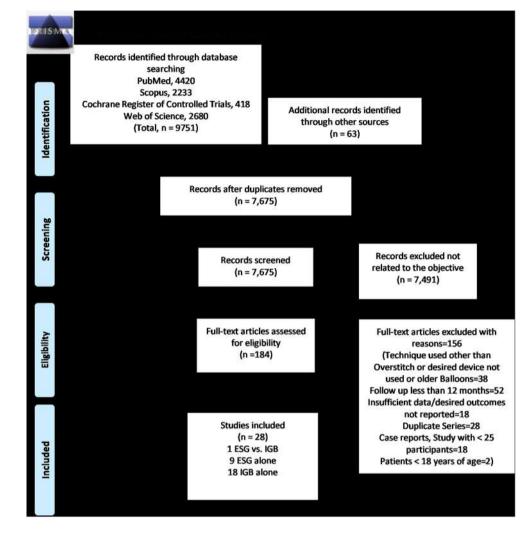
Results

Search Strategy Yield and Study Characteristics

Figure 1 shows the PRISMA flow diagram detailing the process of study selection. Studies included in the meta-analysis are summarized in Table 1. A total of 28 EBMT studies [9–36] with a follow-up of at least 12 months were included in the final analysis. Out of these, only 1 study evaluated both ESG and IGB [18], 9 studies evaluated ESG alone, while 18 studies evaluated IGB. Therefore, a total of 10 ESG and 19 IGB datasets were included for meta-analyses. Phase II and phase III ESG studies by Kumar et al. [13] were included while phase I study performed to evaluate the safety and technical feasibility was excluded. A multicenter ESG study by Sartoretto et al. [37] was excluded since only 6-month follow-up was available. Several IGB studies have only reported outcomes at 6 months at the time of IGB removal, therefore excluded from the analysis.

No controlled or randomized ESG studies were identified. All included ESG studies were observational studies. Two studies were multicenter while the other eight studies were single-center experiences. Four IGB studies were RCTs while the remaining studies were observational. A total of 1979 patients underwent ESG procedure, and 3025 patients underwent IGB placement in the included studies. Table 2 compares the patient characteristics in the two groups. Results of the quality assessment of all included studies were considered adequate for analysis (Supplement 2).


Weight Loss Outcomes


ESG

Based on a meta-analysis of 9 studies, the pooled mean %TWL after ESG at 6- and 12-month follow-up was 15.34 (95% CI 14.33–16.35, $I^2 = 92.23$) and 17.51 $(95\% \text{ CI } 16.44-18.58, I^2 = 88.35)$, respectively (Fig. 2a). Mean %TWL between 18- and 24-month follow-up was 17.85 (95% CI 15.85–19.86, $I^2 = 69.57$, 4 studies). In comparison of these subgroups, %TWL increased at 12 months (p value = 0.004) and 18-24 months (p value = 0.025) follow-up compared to 6 months. The %EWL was reported in 6 studies. The pooled mean %EWL at 6- and 12-month follow-up was 55.61 (95% CI 50.28–60.95, $I^2 = 83.38$) and 60.51 (95%) CI 54.39–66.64, $I^2 = 66.67$) (Fig. 2b). Four studies also reported %EWL at follow-up 18-24 months with a pooled mean of 66.77 (95% CI 57.54–76.00, I^2 = 67.72). %EWL at 12 months was similar (p value = 0.22) but %EWL at 18–24 months (p value = 0.047) was increased as compared to 6-month follow-up.

Author's personal copy

OBES SURG

IGB

The %TWL was reported in 4 RCTs and 5 observational IGB studies (Fig. 3). Overall pooled mean %TWL at 6- and 12month follow-up after IGB was 12.16 (95% CI 10.37-13.95, $I^2 = 91.32\%$ and 10.35 (95% CI 8.38–12.32, $I^2 = 89.80\%$), respectively. The pooled mean %TWL at 18-24 months of follow-up was 6.89 (95% CI 3.78–10.01, $I^2 = 96.50\%$, 3 studies). Mean %TWL with IGB showed a nonsignificant decrease at 12 months (p value = 0.13) but significantly lower %TWL at 18–24 months (p value = 0.003) compared to 6 months, indicating weight recidivism with IGB. %EWL was reported in 2 RCTs and 13 observational IGB studies (Fig. 3). The overall pooled mean %EWL at 6 and 12 months was 34.83 (95% CI 30.97–38.69, $I^2 = 97.71\%$, 15 studies) and 29.65 (95% CI 25.40–33.91, $I^2 = 97.51\%$, 13 studies), respectively (Fig. 3b). The mean %EWL at 18-24-month follow-up was 23.88 (95% CI 17.41–30.33, $I^2 = 87.05\%$, 5 studies). %EWL showed a nonsignificant decrease at 12 months (p value = 0.10) but significantly lower %EWL at 1824 months (p value = 0.001) as compared to 6-month follow-up.

Comparative Analysis ESG Versus IGB

ESG achieved significantly higher %TWL and %EWL than IGB. The difference in mean %TWL between ESG and IGB at 6, 12, and 18–24 months was 3.07 (95% CI 1.46–4.67, p = 0.002), 7.33 (95% CI 5.22–9.44, p value = 0.0001), and 11.51 (95% CI 5.33–17.69, p value = 0.0003), respectively. The difference in mean %EWL between ESG and IGB at 6, 12, and 18–24 months was 20.80 (95% CI 12.50–29.10, p value = 0.0001), 30.99 (95% CI 22.81–39.16, p value = 0.0001), and 43.78 (95% CI 35.98–51.58, p value = 0.0001), respectively.

Meta-regression

Meta-regression with multiple covariates (type of EBMT, mean age, mean BMI, and percentage of males) was performed to assess if differences in characteristics of studies

Table 1	Characteristics	of studies ir	scluded in the	Characteristics of studies included in the meta-analysis								
• Study (year published)	Design	Setting	Country	Intervention	Inclusion criteria	Exclusion criteria	Total patients, N	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, $N(\%)$
Saumoy (2018)	Observational	Observational Single-center USA	USA	ESG	BMI > 30 kg/m ² with failed noninvasive weight loss measures OR BMI > 40 kg/m ² and nonsurgical candidates or declined surgery	History of gastric lesions, neoplastic changes or gastric cancer, contraindications, or at high risk to undergo general	128	43.6 (11.3)	38.92 (6.9)	13.4 (7.4) at 6 mon- ths 15.8 (9.5) at 12 mo-	Ч.Ч.	2 (1 perigastric leak, 1 perforation)
Alqahtani (2019)	Observational	Observational Single-center Saudi Arabia	Saudi Arabia	ESE	BMI > 40 kg/m ² or 35 kg/m ³ with comorbidities	anesthesta Bleeding disorders, large hiatal hernia, and active peptic ulcer disease	1000	34.4 (9.5)	33.3 (4.5)	nths at 6 mon- ths 15.0 (7.7) at 12 mo- nths 14.8 (8.5) at 18 mo-	 64.3 (56.2) at 6 months 67.5 (52.3) at 12 months 64.7 (55.4) at 18 months 	24 (8 severe abdominal pain, 7 post-procedure bleeding, 4 perigastric collections with pleural effusion, 5 post-procedure fever with no sequelae)
Abu Dayyeh (2017)		Observational Single-center USA	USA	ESG	BMI between 30 and 40 kg/m ² with stable weight for 3 months	Anticoagulation, previous gastric surgery, gastric ulceration, hiatal hernia ≥5	25	47.6 (10.0)	35.5 (2.6)	nths NA	54 (40) at 6 months 54 (40) at 12 months 45 (41) at	 (1) perigastric fluid collection, 1 pulmonary embolism, 1 pne umoperitoneum/pneumothorax)
Lopez-Nava (2017)		Observational Single-center Spain	Spain	ESG	BMI > 30 kg/m ² who committed for 1-year multidisciplinary follow-up	cm, or pregnancy Acute, potentially bleeding gastric mucosal lesions (ulcers, acute gastritis), neoplastic lesions, hiatus hernia > 3 cm, coagulopathy, and psychiatric disorders	154	44.9 (9.5)	38.3 (5.5)	15.8 (7.1) at 6 mon- ths 18.2 (10.1) at 12 mo- nths 24 mo- 24 mo-	20 months 47.8 (29.4) at 6 months 52.6 (31.3) at 12 months 60.4 (31.1) at 24 months	No serious adverse events
Morales (2018)	Observational	Observational Single-center Spain	Spain	ESG	BMI > 30 to > 40 kg/m ²	Potentially bleeding lesions, such as ulcers or erosive duodenitis, preneoplastic or neoplastic findings, contraindications, or at high risk to undergo general anesthesia	148	41.5 (10.0)	35.11 (5.5)	uths at 6 mon- ths 17.5 (7.6) at 12 mo- nths 18.6 (7.3) at 18.6 (7.3) at 18 mo- nths	64.9 (51) at 6 months 75.4 (85) at 12 months 79.25 (43) at 18 months	1 (mild GI bleeding)

Table 1 (continued)	sontinued)											
• Study (year published)	Design	Setting	Country	Intervention I	Inclusion criteria	Exclusion criteria	Total patients, <i>N</i>	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, N (%)
Barrichello (2019)	Observational Multicenter	Multicenter	Brazil (6 centers, USA (1 center)	ESG	Dverweight or obese patients who failed diet and lifestyle modifications	Previous gastric surgery, anticoagulation, acute gastric ulceration, cancer, hiatal hernia > 5 cm, gastroesophageal motility disorder,	193	42.3 (9.6)	34.11 (2.97)	14.2 (5.3) at 6 mon- 6 mon- ths 15.1 (5.2) at 12 mo- nths	56.1 (22.9) at 6 months 59.4 (25.7) at 12 months	4 (2 Gl bleeding, 2 perigastric fluid collections)
Sartoretto (2019)	Observational Single-center Australia	Single-center	Australia	ESG	BMI > 27 kg/m ² and failed multiple diet and lifestyle modifications	and pregnancy presonal or family history of gastric cancer, active gastric ulcers, presence of any gastric condition which required endoscopic surveillance (e.g., known gastric intestinal metaplasia), known vascular abnormalities, decompensated organ failure,	121	(11.9) (11.9)	36.7 (4.9)	at (6.8) at 6 mon- 6 mon- ths 19.6 (8.4) at at 12 mo- nths	49.7 (22) at 6 months 55.7 (25) at 12 months	No serious adverse events
Bhandari (2019)	Observational Single-center India	Single-center	In dia	BESG	BMI > 28 kg/m ² and failed attempts to lose weight conservatively	antoxoguation, pregnancylactation Gastric neoplasm, family history of gastric cancer, large hiatus hemia. Individuals with mental health disorders, significant medical comorbidities precluding sedation, coagulopathies, previous budiatie,	53	40.5 (13.8)	34.78 (5.20)	14.2 (6.2) at 6 mon- ths 19.9 (4.9) at 12 mo- nths	Υ	No serious adverse events
Kumar (2017)	Observational Multicenter	Multicenter	Phase II Dominican Republic, USA Phase III Dominican	BESG	BMI > 30 kg/m ² with unsuccessful diet and lifestyle modifications	protecting disorders, gastrointestinal disease, prior gastric surgery, active use of weight loss	Phase II 22 39.2 (1	39.2 (1.6)	34.3 (1.0)	17.3 (1.7) at 6 mon- ths 17.3 (2.6) at	Υ	No serious adverse events

Intervention Inclusion criteria
Republic, Spáin, USA
ESG BMI > 30 kg/m ² in patients who had been previou unsuccessful in losing weight through dict, extresise, and/or medication
IGB BMI > 27 kg/m ² in (ReShape, patients who Orbera) had previously been unsuccessfu losing weight through di exercise.
and/or medications BMI > 30 kg/m ² who had Reshape Duo IGB inserted f weight loss therapy
Othera NA
Orbera NA

OBES SURG

				OBES SURG
Serious adverse events, N (%)	Early removal due to intolerance $(n = 8, 3.8\%)$ Mortality rate 3 (1.4%), 2 within 10 days due to acute gastric perforation secondary to excess vomiting. 1 patient suffered cardiac arrest at 4 weeks	Early removal due to intolerance $(n = 27, 8.3\%)$	Early IGB removal ($n = 30$, 18.8%) Severe dehydration ($n = 2$), gastric outlet obstruction ($n = 1$), gastric perforation ($n = 1$), aspiration pneumonia ($n = 1$), severe abdominal cramping ($n = 1$), severe abdominal cramping ($n = 1$), severe GERD ($n = 1$), esophagitis ($n = 4$)	Early removal due to intolerance (n = 2, 1.4%) Balloon migration $(n = 2)$, rupture (n = 1)
%EWL	 14.5 at 6 months 17.6 at 17.2 at 24 months 	5.5.5 at 6. months 15.3 at 12 months	26.5 (95%CI 23.6–29.3) at 6 months 23.2 (95% CI 20.3–26) at 12 months	29.3 (4.8) at 6 months 27.4 (4.7) at 12 months 26.1 (4.9) at 18 months
%TWL		₹ <u>N</u>	10.2 (6.5) at 6 mon- 6 mon- ths 7.6 (7.5) at 12 mo- nths	14.1(5.7) at 6 mon- ths 112.0 (5.6) at 11.2 (4.6) at 11.2 (4.6) at 18 mo- nths
BMI pre- procedure (S.D)		39.11	35.0	36.2 (9.7)
Age, years mean (S.D)	44.7 (13.0)	34.37	38.7 (9.4)	36.2 (9.7)
Total patients, N		251	160	143
Exclusion criteria		Conditions precluding safe endoscopy, esophagius, large hiatal hernia (> 5 cm), chronic therapy with steroids or nonsteroidal drugs, active peptic ulcer or its previous complications, previous gastric surgery, pregnancy, and inability to maintain regular	follow-up History of foregut or gastrointestinal (GI) surgery (except uncomplicated cholecystectomy or appendectomy), GI obstruction, adhesive peritonitis, or clinically significant hiatal	herma Absolute contraindications: hiatus hemia (> 5 cm), abnormalitics of the pharynx and esophagus, esophageal varices, use of anti- inflammatory or anticoagulant drugs, pregnancy
Intervention Inclusion criteria		High-risk patients, noncompliant patients, or who refused surgery with BMI $\geq 35 \ kgm^2$ or patients with BMI $\leq 35 \ kgm^2$ to integrate medical therapy	Adults aged 18–65 years, with BMI of \geq 30 and \leq 40 kg/m ² , or a history of obesity for at least 2 years with failed conservative weight loss attempts	BMI > 30 kg/m ² without the criteria for a surgical treatment, superobese patients for reducing perioperative risk, and selection of patients for a gastric restrictive surgery
Intervention		Orbera	Orbera	Orbera
Country		Turkey	USA	Italy
Setting		Single-center	Multicenter	Single-center
• Study Design (year published)		Observational Single-center Turkcy	RCT	Observational Single-center Italy
Study (year published)	Ashrafian (2017)	Bozkurt (2012)	Courcoulas (2017)	Crea (2009)

 $\underline{\textcircled{O}}$ Springer

Author's personal copy

OBES SURG

Table 1 (continued)	ontinued)												
 Study (year published) 	Design	Setting	Country	Intervention 1	Inclusion criteria	Exclusion criteria	Total patients, N	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, N (%)	
Dargent (2015)	RCT	Multicenter	France	Orbera	Age 18–65 years and BMI > 27 kg/m ²	and psychiatric disorders. Relative contraindications: esophagitis, ulcention, and acute lesions of the gastric mucous membrane History of gastric or duodenal ulcer, or active <i>Helicobacter pylori</i> infection	101	36.8	34.1 (3.7)	o-atat	Y N	Early removal due to intolerance $(n = 8)$	
Dogan (2013)	Observational	Observational Single-center Turkey	Turkey	Orbera		Hiatal hernia (> 5 cm), or presence of gastrointrestinal tract lesions such as inflammatory or cancerous diseases, peptic ulcer or esophageal/fundus varices, or H/o of alcoholism	20	37.9 (10.6)	44.7 (12.4)	9.3 (8.8) at 6 mon- ths 6.8 (9.5) at 12 mo- nths	AN	No serious adverse events	
Farina (2012) RCT	KCT	Single-center Italy	Italy	Orbera	för bariatric surgety Not defined	or drug addiction Exclusion criteria were diabetes mellitus, systemić, neurological or psychiatric disorders, including history of bulmia or anorexia and drug or alcohol abuse, presence of gastric or duodenal ulcer or <i>Helicobacter pylori</i> infection, uncontrolled hypertension (i.e., blood pressure > 145/95 mmHg) or tachycardia (pulse rate > 90	00	36.6 (1.5)	42.3 (1.0)	14.5 (1.2) at 6 mon- ths 14.3 (2.7) at 12 mo- nths	۲ Z	No serious adverse events	

Table 1 (continued)	ontinuea											
 Study Study Study Published) 	Design	Setting	Country	Intervention	Intervention Inclusion criteria	Exclusion criteria	Total patients, <i>N</i>	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, N (%)
Fuller (2013) RCT	L. L	Single-center Australia	Australia	Orbera	Age 18–60 years, with BMI of 30–40 kgm ² for a minimum of 2 years and metabolic syndrome, who failed supervised weight reduction programs	beats per minute), glaucoma, carneer, other cardiovascular, endocrine, renal, or hepatic diseases. Pregnancy, lactation, or also childbearing potential because not taking adequate contraceptive pre adequate contraceptive pre contraceptive pre contraceptive pre adequate contraceptive pre contraceptive pre adequate exclusion criteria Inflammatory, or bleeding disorders of the GI tract, large hiatus hernia (>5 cm in diametery, prior gastric surgery or insertion of an IGB, or major surgery within previous 3 months, cerebrovascular or gastric surgery or insertion of an IGB, or major gastric surgery or insertion of an IGB, or major gastric surgery or insertion disease or hypothyroidism in which the for at least insufficiency, psychiatric disorder, psychiatric	Ē	43.4 (9.4)	36.0 (2.7)	14.2 at 6 mon- 6 ths 11 mo- nths nths	50.3 at 6 months 32.7 at 12 months	Early removal due to intolerance 3 (0.7%)

🖄 Springer

Table 1 (continued)													
Design Setting	gu		Country	Intervention I	Intervention Inclusion criteria	Exclusion criteria	Total patients, N	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, N (%)	
						pregnancy, alcoholism, drug abuse or patients on prescription or non-prescription medications or non-prescription medications or supplements with known effects on appetite or weight NSAIDs, anticoagulants, or other gastric irri-							
Observational Single-center Italy	2 2	nter	y	Orbera	Age = 18 to 60 years with BMI > 35 or <35 with at least one comorbidity	Prior gastric surgery, chronic drug use with high risk of gastric bleeding, hiatus hernia > 5 cm and/or GERD with second degree esophagitis with active gastric or duodenal ulcer, endocrine causes for obesity, psychiatric ontraindications, pregnancy alcohol- ism and drug addreion	130	38.0 (10.9)	42.1 (6.5)	∀ Z	33.9 (18.1) at 6 months 21.3 (19.7) at 24 months 24 months	No serious adverse events	
Observational Single-center Italy	ခိုခ	nter	Italy	Orbera	NA	NA	80	40.9 (9.3)	54.1 (2.9)	NA	34.7 (6.1) at 6 months 35.1 (4.8) at 12 months	No serious adverse events	
Herve (2005) Observational Single-center France	e-ce	nter	France	Orbera	NA	NA	100	34.8	34.0	NA	39.8 at 6 months 26.8 at 18 months	Early removal due to intolerance $(n = 5, 5\%)$, peptic ulcer $(n = 2)$, esophagitis $(n = 5)$, dehydration $(n = 5)$	
Observational Single-center Saudi Arabia	00	nter	Saudi Arabia	Orbera	NA	Gastrointestinal lesions such as large (> 5 cm) hiatus hernia, grade 3-4 esophagits, active peptic ulceration, varices, or	173	34.5 (11.6)	46.7 (14.1)	NA	19.6 (21.8) at 6 months 18.0 (25.8) at 12 months	Early removal $(n = 33, 19, 8\%)$	

🖄 Springer

Table 1 (Table 1 (continued)											
 Study Study year published) 	Design	Setting	Country	Intervention	Inclusion criteria	Exclusion criteria	Total patients, <i>N</i>	Age, years mean (S.D)	BMI pre- procedure (S.D)	%TWL	%EWL	Serious adverse events, $N(\%)$
						angiodysplasia; and previous bariatric or abdominal surgery, patients on anticogulants or nonsteroidal anti-inflammatory drugs or nonsteroidal or genetic cause for the obese state, malignancy, pregnancy, any documented history of alcoholism, or drug alvise						
Kotzampassi (2012)		Observational Single-center Greece	Greece	Orbera	Obese patients who refused bariatric surgery or failed to meet the IFSO standards for surgery	Presence of hormonal or genetic cause of obesity; alcohol or drug abuse; malignancy, fI tract lesions, already known or identified at endoscopy, such as a large > 5-cm hiatus hermis; grade C-D esophagitis, peptic ulcer, or esophageal/fundus	200	39.4 (11.5)	44.3 (8.4)	Ч Х	43.9 (18.8) at 6 months 42.7 (18.9) at 12 months 27.7 (13.4) at 18 months	Early removal ($n = 26, 5.2\%$) (3 wanted surgery, 11 wanted early removal due to satisfaction with results, 8 patients had copious vomiting, 2 pregnancy, 1 nptured and migrated)
Mui (2010)	Observational	Observational Single-center China	China	Orbera	NA	NA	119	37.8 (10) 38.4 (8)	38.4 (8)	NA	45.1 (35.3) at 6 months 32.9 (48.7) at 12 months	Early removal due to intolerance $(n = 4, 3.3\%)$
Nikolic (2011)	Observational	Observational Single-center Croatia	Croatia	Orbera	Adults with BMI ≥ 35 kg/m ² and failure to attain ≥ 10% of initial weight loss with conservative treatments	ХА	43	20-60	42.1	NA	BMI < 40 37.0, BMI > 40 27.6 at 6 months BMI < 40 27.8, BMI < 40 37.4 at 37.4 at	No major adverse events
Sallet (2004)	Sallet (2004) Observational Single-center Brazil	Single-center	Brazil	Orbera	NA	NA	483	37.5 (12.4)	38.2 (9.4)	NA	57.4 (26.4) at 6 months	Early removal due to intolerance $(n = 11)$, 3.4%), balloon impaction $(n = 2,$

 Study (year published) 	Design	Setting	Country	• Study Design Setting Country Intervention Inclusion criteria (year published)	Exclusion criteria Total $_{N}$ patients, $_{N}$ 1	Total patients, N	Age, /ears nean (S.D)	BMI pre- %TWL % procedure (S.D)	%TWL	%EWL	Serious adverse events, N (%)
										50.9 (28.8) at 12 months	0.6%), intestinal obstruction ($n = 1, 0.3\%$)

 Cable 1 (continued)

might influence %TWL and %EWL. Type of EBMT (ESG or IGB) had a significant impact on %TWL (p value = 0.0001) and %EWL (p value = 0.0001), with all other covariates held constant. ESG was associated with significantly higher %TWL and %EWL than IGB (Supplement 3: Fig. 1a and b).

Only one ESG study had patients with a mean BMI > 40 [18]; otherwise, the mean BMI for all ESG studies was < 40. A total of 9 IGB studies had patients with a mean BMI > 40. Pooled mean %TWL at 12 months for IGB studies with mean BMI > 40 was 11.03 (95% CI 6.91–15.15) and was not significantly different from studies with BMI < 40 (p value = 0.73). Similarly, pooled mean %EWL at 12 months for IGB studies with BMI > 40 was 28.76 (95% CI 20.01–35.51), similar to BMI < 40 (p value = 0.70) (Fig. 4).

Adverse Events

Adverse events were not uniformly described in the included studies; therefore, the crude incidence of adverse events was calculated (Fig. 4).

ESG Most patients had mild to moderate abdominal pain (50.65%) and nausea (32.31%) post-procedure that was managed with medications. Severe abdominal pain was reported in only 2.20% of patients. In one study [16], only 3 out of 1000 patients required reversal of ESG due to persistent symptoms with an overall incidence of 0.15%. Serious adverse events were rare and included gastrointestinal (GI) bleeding (0.61%), perigastric fluid collection (0.45%), perforation (0.10%), post-procedure fever (0.25%), and pulmonary embolism and DVT (0.10%). Overall, these adverse events were seen in 1.52% of the patients. No mortality associated with ESG was reported in the included studies.

IGB Abdominal pain (32.51%) and nausea (55.09%) were also the most common symptoms reported with IGB placement. Early removal of IGB was approximately 5.92% due to intolerance. Adverse events reported were balloon hyperinflation (0.03%), balloon resting in antrum (0.10%), severe dehydration (0.77%), esophagitis (2.33%), GI bleeding (0.21%), obstruction (0.10%), perforation (0.10%), ulcers (0.24%), and severe GERD (0.17%). Overall these adverse events were seen in 3.97% of the patients. Mortality was reported in 3 patients (0.10%), 2 were due to acute gastric perforation, and 1 patient suffered cardiac arrest at 4 weeks postoperatively.

Discussion

We report the results of a meta-analysis indirectly comparing ESG and IGB for the treatment of obesity. We found that the mean %TWL achieved with ESG and IGB at 12 months was

 Table 2
 Comparison of

 endoscopic sleeve gastroplasty
 and intragastric balloon patient

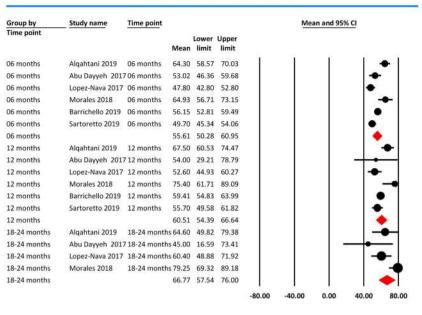
 characteristics and weight loss
 outcomes

	Endoscopic sleeve gastroplasty ($N = 1979$)	Intragastric balloon ($N = 3025$)
Age mean (years)	42.23 (95% CI 40.06–44.39)	39.06 (95%CI 37.49-40.62)
Males (%)	22.52 (95% CI 16.07-30.62)	21.36 (95% CI 16.64–26.99)
BMI	36.08 (95% CI 35.06-37.09)	41.70 (95% CI 38.59-44.80)
%TWL		
6 months	15.34 (95% CI 14.33–16.35)	12.16 (95% CI 10.37–13.95)
12 months	17.51 (95% CI 16.44–18.58)	10.35 (95% CI 08.38-12.32)
18-24 months	17.85 (95% CI 15.85–19.86)	06.89 (95% CI 03.78-10.01)
%EWL		
6 months	55.61 (95% CI 50.28-60.95)	34.83 (95% CI 30.97-38.69)
12 months	60.51 (95%CI 54.39-66.64)	29.65 (95% CI 25.40-33.91)
18–24 months	66.77 (95% CI 57.54–76.00)	23.88 (95% CI 17.41–30.33)

OBES SURG

17.51 and 10.35, respectively. Mean %EWL achieved at 12 months was 60.51 with ESG and 29.65 with IGB. The weight loss outcomes for both ESG and IGB surpass the ASGE joint task force defined threshold (>25 %EWL at 12 months) for a primary obesity intervention to be incorporated into clinical practice.

Excellent weight loss outcomes were seen after ESG. Mean %TWL after ESG at 6-, 12-, and 18- to 24-month follow-up was 15.34, 17.51, and 17.85, respectively. Our results are comparable to a recently published study by Galvao Neto et al. [38] which included a total of 233 ESG patients and showed %TWL of 17.1 at 6 months and 19.7 at 12 months. On indirect comparison to IGB, ESG resulted in significantly superior weight loss compared with IGB placement. The difference in mean %TWL between ESG and IGB was 3.07 at 6 months, 7.33 at 12 months, and 11.51 at 18–24 months. Similarly, the difference in mean %EWL between ESG and IGB at 6, 12, and 18–24 months was 20.80, 30.99, and 43.78, respectively. These results were consistent with the only previous observational study directly comparing ESG and IGB [18].


Weight loss with ESG was durable, %TWL, and %EWL showed a slight increase at 12- and 24-month follow-up as compared to 6 months. Whereas weight loss with IGB decreased at 12-month and 24-month follow-up, suggesting weight regain after removal of the balloon at 6 months. Weight regain is a significant drawback with IGB reported in multiple studies [39, 40]. An adjustable fluid-filled balloon implanted in the stomach for 1 year is currently under investigation in the USA. The extended implantation period can result in superior weight loss at 12 months [41]; however, patients can regain weight after balloon removal. Sequential therapy with a second IGB after the first balloon was removed can also be used to combat weight regain. The durability of weight loss will ultimately depend on the weight loss program and continued maintenance of lifestyle modification [42]. Additionally, weight loss medications can also be used in conjunction with IGB. The use of concurrent pharmacotherapy with IGB did not result in weight regain at 12-month follow-up [27, 43], suggesting that the use of pharmacotherapy can help maintain weight loss after IGB removal.

Many IGB studies had patients with a mean BMI of > 40 or severe obesity. Mean %TWL and %EWL at 12 months in these studies were 11.03 and 28.75, respectively. The ASGE joint task force recommended 5% TWL as an absolute minimum threshold for any nonprimary EBMT such a bridging therapy. IGB surpasses these thresholds and successfully used as a bridge therapy for severely obese patients in many studies [21, 44]. Almost all ESG studies had patients with a mean BMI between 30 and 40. There is limited evidence on the safety and efficacy of bariatric surgery after ESG. LSG can be technically challenging after an ESG, although one small single-center study [45] has reported safe and feasible LSG after ESG. The presence of sutures, anchors, and cinches in the stomach greater curvature can obstruct the surgical field during LSG [45]. However, during ESG, sutures are not applied in the fundus; therefore, if Roux-en Y gastric bypass is a better option after ESG remains to be investigated. For obese patients who do not qualify for bariatric surgery or are nonsurgical candidates, ESG is still an attractive alternative as primary bariatric therapy because of superior and durable weight loss.

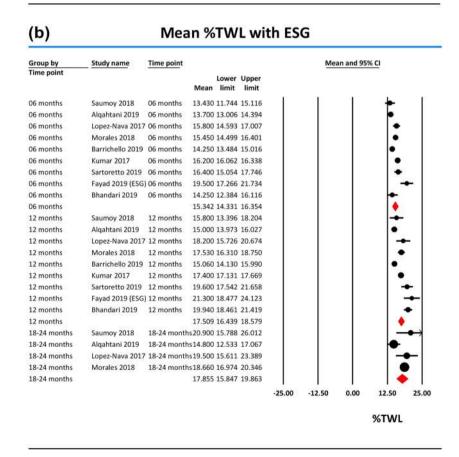
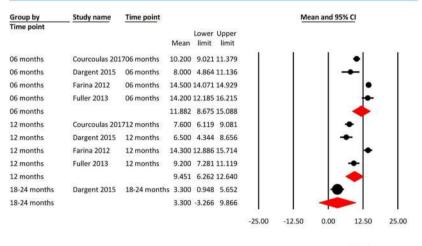

ASGE task force recommended that the risk associated with EBMT should equate to a $\leq 5\%$ incidence of serious adverse events (SAE). SAE profile was acceptable for both ESG and IGB. Most of the reported adverse events with ESG and IGB can be classified as mild to moderate adverse events, according to ASGE Quality Task Force recommendations [46]. Mild to moderate abdominal pain was a predominant complaint after ESG, while nausea was a more common occurrence after IGB. Most of these patients were managed conservatively with medications. Approximately 6% of IGB patients underwent early removal of IGB due to intolerance. Whereas, only few ESG patients required reversal of ESG

Fig. 2 a, **b** Forest plot of studies reporting the percentage of percent total weight loss (%TWL) and percentage of excess weight loss (%EWL) after endoscopic sleeve gastroplasty (ESG) (a)

Mean %EWL with ESG


%EWL

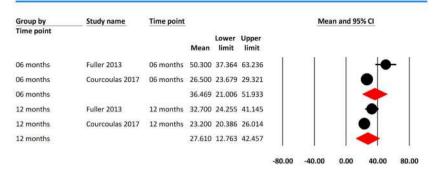
due to persistent symptoms, suggesting ESG was better tolerated. Lower rates of ESG reversal may be explained by the technically challenging nature of the procedure compared to IGB removal. An adjustable IGB under investigation in the

Fig. 3 a–d Forest plot of studies reporting the percent total weight loss (%TWL) and percentage of excess weight loss (%EWL) after intragastric balloon (IGB)

(a) Mean %TWL with IGB in RCTs

%TWL

(b) Mean %TWL with IGB in Observational Studies

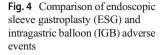

Group by	Study name	Time point					Me	an and 959	% CI	
Time point			Mean		Upper limit					
06 months	Agnihotri 2018	06 months	11.400	10.093	12.707	- E	212	1	•	
06 months	Crea 2009	06 months	14.100	13.149	15.051				•	
06 months	Dogan 2013	06 months	9.300	6.861	11.739				-	
06 months	Fayad 2019 (IGB)	06 months	15.000	12.728	17.272					
06 months	Nikolic 2011	06 months	11.700	10.101	13.299				•	
06 months			12.342	10.104	14.579					
12 months	Agnihotri 2018	12 months	14.700	8.024	21.376				-+-	-
12 months	Crea 2009	12 months	12.000	11.066	12.934				•	
12 months	Dogan 2013	12 months	6.800	4.167	9.433			- 1 - 8	•	
12 months	Fayad 2019 (IGB)	12 months	13.900	9.956	17.844					
12 months	Nikolic 2011	12 months	12.293	4.260	20.327			- 1 -	-	- 1
12 months			11.351	8.596	14.106				-	
18-24 months	Crea 2009	18-24 months	11.200	10.433	11.967					
18-24 months	Dogan 2013	18-24 months	5.400	3.183	7.617					
18-24 months			8.554	5.054	12.054				•	
						-25.00	-12.50	0.00	12.50	25.00
									%TWL	

USA permits intragastric volume adjustment according to patient tolerability and thus may reduce the incidence of early removal. There was no mortality reported in patients with ESG, and the mortality associated with IGB was only 0.1% in the included studies. Despite the recent FDA alerts, IGBs remain a safe endoscopic bariatric treatment. A recent metaanalysis [47] of 15 RCTs including 886 IGBs showed no mortality. In our analysis, mortality in 2 out of the 3 patients

🖄 Springer

was related to gastric perforation [21], underlining the importance of a proper evaluation before placement; adequate periprocedural management of retching, nausea, and vomiting; early and continual vigilance for side effects and urgent intervention upon suspicion of signs preempting perforation; and other serious events [48]. A strategy for appropriate patient selection and close follow-up in a multidisciplinary program should be implemented. (c)

Mean %EWL with IGB in RCTs


Group by	Study name	Time point					Me	an and 95	% CI	
Time point			Mean	Lower limit	Upper limit					
06 months	Sallet 2004	06 months	57,400	51.788	63.012	1	- 3	2		H 1
06 months	Herve 2005	06 months	39.800	30.196	49.404				+	~ I.
06 months	Angrisani 2006	06 months	51.700	48.172	55.228					
06 months	Genco 2008	06 months	33.900	30.789	37.011				•	
06 months	Crea 2009	06 months	29.300	28.499	30.101				•	
06 months	Genco 2009	06 months	34.700	33.363	36.037				•	
06 months	Al Kahtani 2009	06 months	19.600	15.989	23.211				•	
06 months	Mui 2010	06 months	45.100	38.758	51.442					
06 months	Nikolic 2011	06 months	30.535	21.872	39.199				-	
06 months	Kotzampassi 2012	06 months	43.900	41.939	45.861				•	
06 months	Bozkurt 2012	06 months	25.495	21.533	29.456				•	
06 months	Agnihotri 2018	06 months	29.900	26.351	33.449				•	
06 months	Ashrafian 2017	06 months	14.500	11.266	17.734					
06 months			34.804	30.653	38.955			1.121	•	
L2 months	Sallet 2004	12 months	50.900	44.865	56.935				+	
L2 months	Angrisani 2006	12 months	27.100	25.032	29.168				•	
12 months	Crea 2009	12 months	27.400	26.623	28.177				•	
L2 months	Genco 2009	12 months	35.100	34.048	36.152				•	
L2 months	Al Kahtani 2009	12 months	18.000	13.680	22.320				•	
L2 months	Mui 2010	12 months	32.900	21.534	44.266					
L2 months	Nikolic 2011	12 months	31.719	22.471	40.967					
12 months	Kotzampassi 2012	12 months	42.730	40.850	44.610					
L2 months	Bozkurt 2012	12 months	15.293	8.854	21.733			-	e l'	
L2 months	Agnihotri 2018	12 months	36.400	20.501	52.299				-	
L2 months	Ashrafian 2017	12 months	17.600	14.072	21.128					
L2 months			30.088	25.410	34.766			~		
L8-24 months	Herve 2005	18-24 months	26.800	21.611	31.989					
L8-24 months	Genco 2008	18-24 months	21.300	17.932	24.668			- 3		
18-24 months	Crea 2009	18-24 months	26.100	25.282	26.918			~		
18-24 months	Kotzampassi 2012	18-24 months		26.310						
18-24 months	Ashrafian 2017	18-24 months		13.084						
18-24 months				17.341					•	
			- 79907 (<i>M</i>		0.000078S	-80.00	-40.00	0.00	40.00	80.0
									%EWL	

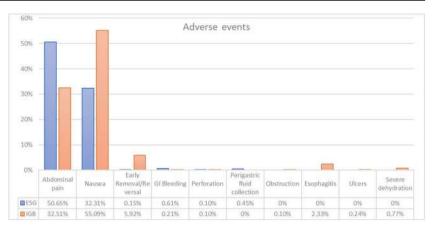

(d) Mean %EWL with IGB in Observational Studies

Fig. 3 continued.

IGB is the most well established and readily available EBMT. Whereas, ESG has recently gained popularity and is currently performed at selected centers [49]. ESG is a technically complex procedure as compared to IGB and is associated with a longer learning curve. One study showed that about 38 ESG procedures by a single operator are required to attain efficiency (refining performance to decrease procedure time), while mastery (absence of outliers) was attained after 55 procedures [9]. Standardized ESG training and credentialing methods are required for widespread expansion of the procedure. Both ESG and IGB are mostly self-pay procedures in the USA. The cost of ESG is slightly higher than IGB; however, the superior weight

Author's personal copy

loss may offset the higher cost related to ESG. ESG is a single endoscopic procedure, whereas most IGBs require two procedures (one of IGB insertion and another for removal). An airfilled swallowable balloon requires only one endoscopic procedure for removal but is currently not FDA-approved. Identifying the right patient phenotype and physiology for these procedures will be essential for optimizing outcomes.

We performed a comprehensive systematic review and meta-analysis and analyzed weight loss outcomes up to 24month follow-up. We included most updated studies from multiple centers with an overall large number of patients. Despite our rigorous criteria, our study has several limitations. The quality of the included studies limits the quality of our systematic review and meta-analysis. Although ESG outcomes were reproducible at centers worldwide, no controlled ESG studies are available. Only 4 IGB studies were RCTs; otherwise, all studies were observational of variable sample size. Nonetheless, the outcomes of the observational IGB studies were consistent with the RCTs. ESG has recently gained momentum, and long-term follow-up data is not available. Reduction in metabolic comorbidities constitutes a promising outcome for EBMTs; however, they were not reported by all studies and were not included in the analysis. Many of the included studies did not clarify the concomitant use of weight loss medications during follow-up. Considerable heterogeneity was seen in our estimates. Differences in patient characteristics were seen although we did control for possible study-level moderators in the metaregression analysis. Other endoscopic gastroplasty techniques such as primary obesity surgery endoluminal (POSE) and Endomina did not meet the inclusion criteria and were not included. Included IGB studies consisted of only two types of the FDA-approved fluid-filled balloons, while studies with other types of IGBs did not meet the inclusion criteria. Multiple IGB studies were excluded due to less than 12 months of follow-up. However, outcomes for our IGB analysis were consistent with previous IGB meta-analysis [2]. Lack of standardized definition for SAE in included studies also may affect the comparison.

Conclusion In conclusion, ESG and IGB are minimally invasive, safe, and effective endoscopic bariatric procedures for weight loss. ESG achieved superior weight loss as a primary obesity therapy compared to IGB. Based on these studies, weight loss with ESG is durable while weight regain is common following IGB removal. Nevertheless, a variety of approaches are essential to optimally care for this underserved population and there are several factors other than weight loss that should be considered in selecting the ideal therapy to care for individual patients.

Acknowledgments The authors acknowledge Anna Crawford (Librarian, West Virginia University Health Sciences Library) for conducting the literature searches.

Compliance with Ethical Standards

Conflict of Interest Shailendra Singh, Diogo Turiani Hourneaux de Moura, Ahmad Khan, Mohammad Bilal, Monica Chowdhry, Michele B. Ryan, Ahmad Najdat Bazarbashi declare that they have no conflict of interest. Christopher C Thompson is a consultant for Apollo Endosurgery, USGI medical, Fractyl, Boston Scientific, Medtronic, Olympus, and GI dynamics.

Ethical Approval Statement All procedures performed in included studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent Statement Informed consent does not apply.

References

- Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg 2013 23(4):427-436.
- Abu Dayyeh BK, Kumar N, Edmundowicz SA, et al. ASGE Bariatric Endoscopy Task Force systematic review and metaanalysis assessing the ASGE PIVI thresholds for adopting endoscopic bariatric therapies. Gastrointest Endosc. 2015;82:425– 438.e5. https://doi.org/10.1016/j.gie.2015.03.1964.

- Moura D, Oliveira J, De Moura EGH, et al. Effectiveness of intragastric balloon for obesity: a systematic review and metaanalysis based on randomized control trials. Surg Obes Relat Dis. 2016;12:420–9. https://doi.org/10.1016/j.soard.2015.10.077.
- Kotinda APST, de Moura DTH, Ribeiro IB, et al. Efficacy of intragastric balloons for weight loss in overweight and obese adults: a systematic review and meta-analysis of randomized controlled trials. Obes Surg. 2020; https://doi.org/10.1007/s11695-020-04558-5.
- Kumar N, Lopez-Nava G, Sahdala HNP, et al. Endoscopic sleeve gastroplasty: multicenter weight loss results. Gastroenterology. 2015;
- Singh S, Hourneaux de Moura DT, Khan A, et al. Safety and efficacy of endoscopic sleeve gastroplasty worldwide for treatment of obesity: a systematic review and meta-analysis. Surg Obes Relat Dis. 2020; https://doi.org/10.1016/j.soard.2019.11.012.
- de Miranda Neto AA, de Moura DTH, Ribeiro IB, et al. Efficacy and safety of endoscopic sleeve gastroplasty at mid term in the management of overweight and obese patients: a systematic review and meta-analysis. Obes Surg. 2020;30:1971–87. https://doi.org/ 10.1007/s11695-020-04449-9.
- Ginsberg GG, Chand B, Cote GA, et al. A pathway to endoscopic bariatric therapies. Gastrointest Endosc. 2011;74:943–53. https:// doi.org/10.1016/j.gie.2011.08.053.
- Saumoy M, Schneider Y, Zhou XK, et al. A single-operator learning curve analysis for the endoscopic sleeve gastroplasty. Gastrointest Endosc. 2018;87:442–7. https://doi.org/10.1016/j.gie. 2017.08.014.
- Sartoretto A, Marinos G, Sui Z. Endoscopic sleeve gastroplasty for obesity: improved body composition at 1-year follow-up. Gastrointest Endosc. 2019;89:AB260. https://doi.org/10.1016/j. gie.2019.03.292.
- Graus Morales J, Crespo Pérez L, Marques A, et al. Modified endoscopic gastroplasty for the treatment of obesity. Surg Endosc. 2018;32:3936–42. https://doi.org/10.1007/s00464-018-6133-0.
- Lopez-Nava G, Galvão MP, Bautista-Castaño I, et al. Endoscopic sleeve gastroplasty for obesity treatment: two years of experience. Arq Bras Cir Dig. 2017;30:18–20. https://doi.org/10.1590/0102-6720201700010006.
- Kumar N, Abu Dayyeh BK, Lopez-Nava Breviere G, et al. Endoscopic sutured gastroplasty: procedure evolution from firstin-man cases through current technique. Surg Endosc. 2018;32: 2159–64. https://doi.org/10.1007/s00464-017-5869-2.
- Bhandari M, Jain S, Mathur W, et al. Endoscopic sleeve gastroplasty is an effective and safe minimally invasive approach for treatment of obesity: first Indian experience. Dig Endosc. 2019: den.13508. https://doi.org/10.1111/den.13508.
- Barrichello S, Hourneaux de Moura DT, Hourneaux de Moura EG, et al. Endoscopic sleeve gastroplasty in the management of overweight and obesity: an international multicenter study. Gastrointest Endosc. 2019; https://doi.org/10.1016/j.gie.2019.06.013.
- Alqahtani A, Al-Darwish A, Mahmoud AE, et al. Short-term outcomes of endoscopic sleeve gastroplasty in 1000 consecutive patients. Gastrointest Endosc. 2019;89(6):1132–8. https://doi.org/10.1016/j.gie.2018.12.012.
- Abu Dayyeh BK, Acosta A, Camilleri M, et al. Endoscopic sleeve gastroplasty alters gastric physiology and induces loss of body weight in obese individuals. Clin Gastroenterol Hepatol. 2017;15(1):37–43.e1. https://doi.org/10.1016/j.cgh.2015.12.030.
- Fayad L, Cheskin LJ, Adam A, et al. Endoscopic sleeve gastroplasty versus intragastric balloon insertion: efficacy, durability, and safety. Endoscopy. 2019;51:532–9. https://doi.org/10. 1055/a-0852-3441.
- Agnihotri A, Xie A, Bartalos C, et al. Real-world safety and efficacy of fluid-filled dual intragastric balloon for weight loss. Clin

Gastroenterol Hepatol. 2018;16:1081–1088.e1. https://doi.org/10. 1016/j.cgh.2018.02.026.

- Angrisani L, Lorenzo M, Borrelli V, et al. Is bariatric surgery necessary after intragastric balloon treatment? Obes Surg. 2006;16: 1135–7. https://doi.org/10.1381/096089206778392365.
- Ashrafian H, Monnich M, Braby TS, et al. Intragastric balloon outcomes in super-obesity: a 16-year city center hospital series. Surg Obes Relat Dis. 2018;14:1691–9. https://doi.org/10.1016/j. soard.2018.07.010.
- Bozkurt S, Coskun H. The early results of intragastric balloon application of different BMI groups. Eur Surg Acta Chir Austriaca. 2012;44:383–7. https://doi.org/10.1007/s10353-012-0167-7.
- Courcoulas A, Abu Dayyeh BK, Eaton L, et al. Intragastric balloon as an adjunct to lifestyle intervention: a randomized controlled trial. Int J Obes. 2017;41:427–33. https://doi.org/10.1038/ijo.2016.229.
- Crea N, Pata G, Della Casa D, et al. Improvement of metabolic syndrome following intragastric balloon: 1 year follow-up analysis. Obes Surg. 2009;19:1084–8. https://doi.org/10.1007/s11695-009-9879-6.
- Dargent J, Mion F, Costil V, et al. Multicenter randomized study of obesity treatment with minimally invasive injection of hyaluronic acid versus and combined with intragastric balloon. Obes Surg. 2015;25:1842–7. https://doi.org/10.1007/s11695-015-1648-0.
- Dogan UB, Gumurdulu Y, Akin MS, et al. Five percent weight lost in the first month of intragastric balloon treatment may be a predictor for long-term weight maintenance. Obes Surg. 2013;23:892–6. https://doi.org/10.1007/s11695-013-0876-4.
- Farina MG, Baratta R, Nigro A, et al. Intragastric balloon in association with lifestyle and/or pharmacotherapy in the long-term management of obesity. Obes Surg. 2012;22:565–71. https://doi.org/10. 1007/s11695-011-0514-y.
- Fuller NR, Pearson S, Lau NS, et al. An intragastric balloon in the treatment of obese individuals with metabolic syndrome: a randomized controlled study. Obesity. 2013;21:1561–70. https://doi.org/ 10.1002/oby.20414.
- Genco A, Balducci S, Bacci V, et al. Intragastric balloon or diet alone? A retrospective evaluation. Obes Surg. 2008;18:989– 92. https://doi.org/10.1007/s11695-007-9383-9.
- Genco A, Cipriano M, Materia A, et al. Laparoscopic sleeve gastrectomy versus intragastric balloon: a case-control study. Surg Endosc. 2009;23:1849–53. https://doi.org/10.1007/s00464-008-0285-2.
- Herve J, Wahlen CH, Schaeken A, et al. What becomes of patients one year after the intragastric balloon has been removed? Obes Surg. 2005;15:864–70. https://doi.org/10.1381/0960892054 222894.
- Al Kahtani K, Khan MQ, Helmy A, et al. Bio-enteric intragastric balloon in obese patients: a retrospective analysis of King Faisal specialist hospital experience. Obes Surg. 2010;20:1219–26. https://doi.org/10.1007/s11695-008-9654-0.
- Kotzampassi K, Grosomanidis V, Papakostas P, et al. 500 intragastric balloons: what happens 5 years thereafter? Obes Surg. 2012;22:896–903. https://doi.org/10.1007/s11695-012-0607-2.
- Mui WLM, Ng EKW, Tsung BYS, et al. Impact on obesity-related illnesses and quality of life following intragastric balloon. Obes Surg. 2010;20:1128–32. https://doi.org/10.1007/s11695-008-9766-6.
- Nikolic M, Boban M, Ljubicic N, et al. Morbidly obese are ghrelin and leptin hyporesponders with lesser intragastric balloon treatment efficiency: ghrelin and leptin changes in relation to obesity treatment. Obes Surg. 2011;21:1597–604. https://doi.org/10.1007/ s11695-011-0414-1.
- Sallet JA, Marchesini JB, Paiva DS, et al. Brazilian multicenter study of the intragastric balloon. Obes Surg. 2004;14:991–8. https://doi.org/10.1381/0960892041719671.

Author's personal copy

- Sartoretto A, Sui Z, Hill C, et al. Endoscopic sleeve gastroplasty (ESG) is a reproducible and effective endoscopic bariatric therapy suitable for widespread clinical adoption: a large, international multicenter study. Obes Surg. 2018;28:1812–21. https://doi.org/10. 1007/s11695-018-3135-x.
- Neto MG, Moon RC, de Quadros LG, et al. Safety and short-term effectiveness of endoscopic sleeve gastroplasty using overstitch: preliminary report from a multicenter study. Surg Endosc. 2019; https://doi.org/10.1007/s00464-019-07212-z.
- Tate CM, Geliebter A. Intragastric balloon treatment for obesity: review of recent studies. Adv Ther. 2017;34:1859–75. https://doi. org/10.1007/s12325-017-0562-3.
- Genco A, López-Nava G, Wahlen C, et al. Multi-centre European experience with intragastric balloon in overweight populations: 13 years of experience. Obes Surg. 2013;23:515–21. https://doi.org/ 10.1007/s11695-012-0829-3.
- Abu Dayyeh BK, Noar MD, Lavin T, et al. 176 pivotal randomizedcontrolled trial of the adjustable (SPATZ-3) intragastric balloon system for weight loss. Gastrointest Endosc. 2019;89:AB58–9. https://doi.org/10.1016/j.gie.2019.04.020.
- Kumar N, Sullivan S, Thompson CC. The role of endoscopic therapy in obesity management: intragastric balloons and aspiration therapy. Diabetes, Metab Syndr Obes Targets Ther. 2017; https:// doi.org/10.2147/DMSO.S95118.
- Shah SL, Hajifathalian K, Mehta A, et al. 1105 impact of concurrent pharmacotherapy with intragastric balloons in the treatment of

obesity. Gastroenterology. 2019;156:S-236. https://doi.org/10. 1016/s0016-5085(19)37390-1.

- Ball W, Raza SS, Loy J, et al. Effectiveness of intra-gastric balloon as a bridge to definitive surgery in the super obese. Obes Surg. 2019;29:1932–6. https://doi.org/10.1007/s11695-019-03794-8.
- 45. Alqahtani AR, Elahmedi M, Alqahtani YA, et al. Laparoscopic sleeve gastrectomy after endoscopic sleeve gastroplasty: technical aspects and short-term outcomes. Obes Surg. 2019;29:3547–52. https://doi.org/10.1007/s11695-019-04024-x.
- Cotton PB, Eisen GM, Aabakken L, et al. A lexicon for endoscopic adverse events: report of an ASGE workshop. Gastrointest Endosc. 2010;71:446–54. https://doi.org/10.1016/j.gie.2009.10.027.
- Bazerbachi F, Haffar S, Sawas T, et al. Fluid-filled versus gas-filled intragastric balloons as obesity interventions: a network metaanalysis of randomized trials. Obes Surg. 2018;28:2617–25. https://doi.org/10.1007/s11695-018-3227-7.
- Bazerbachi F, Vargas EJ, Abu Dayyeh BK. Endoscopic bariatric therapy. Am J Gastroenterol. 2019; https://doi.org/10.14309/ajg. 00000000000239.
- Singh S, Hourneaux de Moura DT, Khan A, et al. Safety and efficacy of endoscopic sleeve gastroplasty worldwide for treatment of obesity: a systematic review and meta-analysis. Surg Obes Relat Dis. 2019; https://doi.org/10.1016/J.SOARD.2019.11.012.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.